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namely carbon sequestration and water security 
as regulating and provisioning services, as well as 
nature values of constructed wetlands, namely instru-
mental and intrinsic values. As a result, 38 articles 
were selected and comprehensively examined. As the 
lack of an interdisciplinary approach makes data and 
information integration difficult, this study derived an 
integrated classification of constructed wetlands’ ser-
vices and mapped with its nature values, guided by 
the Millennium Ecosystem Assessment framework. 
Besides, mechanisms and factors affecting carbon 
sequestration and water security were also discussed. 
The carbon–water nexus was then conceptualised as 
interlinkages between engineered and natural phys-
icochemical processes at the interface between car-
bon and water cycles. To fill the gaps, based on the 
carbon–water nexus concept, a new framework was 
synthesised at the end of the deliberation for con-
structed wetlands in regulating local climate through 
carbon sequestration and ensuring water security 
through water treatment and purification as well as 
influencing socio-cultural values, which needs an 
integrated approach that is the novelty of this work. 
The framework integrates the dichotomy of the 
instrumental-intrinsic nature values of constructed 
wetlands to evaluate the importance and benefit of the 
carbon–water nexus. The framework that reveals the 
vitality of nature values provided by constructed wet-
lands can help improve the decision-making to pri-
oritise ecosystem services and conservation efforts, 

Abstract As the climate change impacts are 
expected to become increasingly disruptive, affecting 
water security, environmental health and ecosystem, 
constructed wetlands receive attention for their func-
tions in delivering various life-sustaining services 
to human and environmental systems. In this arti-
cle, a systematic review was conducted through the 
Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses standard to identify the current 
research on constructed wetlands’ nature values and 
services from 2011 to 2020 of two databases, namely 
Scopus and Web of Science. The criteria of assess-
ment focus on holistic deliberation of subject matters, 
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particularly in the sustainable management of con-
structed wetlands.

Keywords Carbon–water nexus · Constructed 
wetlands · Natured-based solution · Carbon 
sequestration · Water security · Sustainability

Introduction

Climate change and its impact

Global climate change is one of the current issues 
extensively debated internationally whereby many 
climate experts believe it is attributable to the 
increased release of greenhouse gases (GHGs) arising 
mainly from anthropogenic activities (Al-Ghussain, 
2018; Goldberg et al., 2019; Letcher, 2019). The pri-
mary GHG, carbon dioxide  (CO2), has significantly 
contributed to global warming and subsequently cli-
mate change. According to the National Aeronautics 
and Space Administration (NASA), the  CO2 concen-
tration in the Earth’s atmosphere is almost 417 parts 
per million (ppm) (https:// clima te. nasa. gov/). It is 
observed that the concentration of  CO2 has increased 
gradually since the Industrial Revolution by 48% 
(280 ppm) and 12% (380 ppm) over the last two dec-
ades (Rosli et  al., 2017). Furthermore, simulation 
and projection show that if the atmospheric  CO2 con-
centration is increased and maintained at 550  ppm, 
global annual  CO2 emissions need to be reduced by 
more than 75% over the next century (Emrouznejad 
et al., 2019; Schröder & Cabral, 2019). Rogelj et al. 
(2016) stated that  CO2 emission is estimated to reach 
about 65 Gt  CO2eq   yr−1 by 2030. This phenomenon 
is expected to have catastrophic effects on natural 
and human environments if it is not addressed. The 
predicted impacts relate to habitat loss, the exist-
ence of unknown plant species, and the decline in 
the distribution of indigenous species that are poorly 
adapted to drought, heat and water insufficiency 
(Feistel & Hellmuth, 2021; Kabisch et  al., 2016). 
Thus, it will likely become humanity’s most impor-
tant and nuanced environmental problem over time 
(Awange 2018; Intergovernmental Panel on Climate 
Change (IPCC) 2018). Thus, this area of research is 
under widespread scrutiny and investigation. Today’s 
researchers and engineers’ most significant challenge 
is to improve and develop systems for capturing  CO2 

produced by anthropogenic activities and sequester-
ing it securely from the atmosphere, to combat cli-
mate change and its impacts by 2030, as stated by the 
United Nations in Sustainable Development Goals 
(SDGs) (www. susta inabl edeve lopme nt. un. org).

Many efforts are made to limit  CO2 and other 
GHGs emissions into the environment to lessen cli-
mate change impacts (Azarkamand et al., 2020; Van 
Vuuren et al., 2018). The Paris Agreement acknowl-
edges and offers a basis for ratcheting efforts to 
tackle global warming by balancing GHG removals 
and anthropogenic emissions to their parties. In gen-
eral, all major GHGs State Parties pledged to reduce 
GHGs emissions from 26 to 28% of 2005 concentra-
tion levels by 2025, except for the United States of 
America (USA). This agreement strives for a vital, 
significant and feasible mitigation action towards 
global climate change through agreeable entire par-
ties to reach a stipulated national governed response 
to decreasing anthropogenic emissions of  CO2 into 
the atmosphere.

Several research groups have been developing 
methods to mitigate and reduce the excess  CO2 in 
the atmosphere. Innovation by science and technol-
ogy is the ordinary means to assess and propose how 
to tackle and solve these issues (Cai et al., 2021; Du 
et al., 2019). However, Bellamy (2015) affirmed that 
even though it would slow the effect, technology is 
expensive and needs sophisticated instruments and 
experts to handle, yet poses high risks and uncertain-
ties to living life. Moreover, technology is not limited 
to technical aspects but must incorporate ethical and 
social concerns (Byskov et  al., 2019). Hence, max-
imising the ecosystem’s functions and services in 
climate mitigation and adaptation is seen as a nature-
based solution to sustain human and environmental 
systems and deliver valuable benefits for people and 
nature (Marín-muñiz et  al., 2014; Xiaoyan et  al., 
2019).

Constructed wetland as a nature-based solution

Wetlands have been demonstrated to be among the 
significant important, effective and no or low-cost 
alternatives for sequestering  CO2 (Derakhshan-Nejad 
et  al., 2019; Harenda et  al., 2018; Lorenz & Lal, 
2018; Nahlik & Fennessy, 2016; Reddy et al., 2016). 
Wetland possesses a complex ecosystem that includes 
lakes, marshes and floodplains mainly covered with 

https://climate.nasa.gov/
http://www.sustainabledevelopment.un.org
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water-saturated soil, providing numerous services to 
human well-being and the environment, as classified 
by the Millennium Ecosystem Assessment (Table 1) 
(MEA, 2005). Wetlands can be portrayed as ‘the 
kidney of the landscape’ with great indirect value as 
resources, sinks and changes of many biological and 
chemical substances (Mitsch, 2020). Despite having 
a significant role in water quality improvement, wild-
life protection and flood mitigation, several studies 
showed that wetlands are a natural system for seques-
tering excessive  CO2 in the atmosphere (Abdullahi 
et al., 2018; Graves et al., 2020; Lorenz & Lal, 2018). 
Wetlands comprise the highest carbon storage as the 
largest carbon pool and conclusively contribute to 
global carbon cycling (Lorenz & Lal, 2018). Even 

though central mitigation bank guidelines do not list 
carbon storage among the wetlands’ functions, it must 
be acknowledged as a vital ecosystem service (Means 
et al., 2016).

However, according to Davidson (2014), the 
decline rate of world wetlands was 3.7 times faster 
during the twentieth and early twenty-first centuries, 
with 64–71% loss since 1900 AD. Industrialisation, 
land expansion for agriculture and urbanisation have 
contributed to this loss of natural wetlands worldwide 
(Junk et  al. 2013). The intensifying rate of natural 
wetlands’ failure has alternatively led to constructed 
wetlands that are intended to replicate and mimic the 
functions and values of natural wetlands that have 
been devastated (Metcalfe et  al., 2018). Constructed 

Table 1  Services provided by wetlands (MEA 2005)

Services Examples

Regulating
Services that regulate the ecosystem process 

while maintaining environmental quality and 
outputs

Climate regulating Source and sink GHGs, influence local and 
regional temperature, raining patterns and other 
climate processes

Water treatment and purification Water retention, water recovery and water 
removal of excess pollutants and nutrients

Water hydrological Groundwater recharge and discharge
Natural hazard regulation Storm protection and flood control
Pollination Habitat for pollinators
Erosion regulation Retention of soils and sediments

Provisioning
Services that provide resources and products 

obtained from ecosystems
Freshwater Storage and retention of water for domestic, 

industrial and agricultural use
Food Fish, fruits and wild grains production
Biochemical Extraction of medicines and other materials from 

biota
Genetic materials Genes for resistance to plant pathogens
Fibre and fuel Logs, peat, fuelwood and fodder production

Supporting
Fundamental services that underpin the provi-

sion of services
Soil formation Sediment retention and accumulation of an 

organic substance
Nutrient cycle Storage, cycle, process and acquisition of nutri-

ents
Cultural
Non-material services which provide benefits Spiritual and inspirational Source of inspiration, some religions attach 

spiritual and religious values to aspects of the 
wetlands ecosystems

Aesthetic Beauty and aesthetic value in aspects of wetland 
ecosystems

Recreational Opportunities for recreational activities
Congnitive/educational Opportunities for formal and informal education
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wetlands are becoming increasingly important, 
whereby the specific ecosystem services do not have 
to be mutually exclusive, as both natural and con-
structed wetlands can perform a variety of ecosystem 
functions (Wong et al., 2018).

The nature values and services of constructed 
wetlands

The properties of constructed wetlands are similar 
to natural wetlands. It incorporates physical, chemi-
cal and biological processes, providing ecosystem 
services derived from the interactions between water, 
soil, aquatic organisms, plants and microbes, i.e. 
sedimentation, nutrient, carbon and water cycling. 
In addition, plant diversity contributes to increasing 
the landscape by creating significant wildlife habitats 
for various animals, such as amphibians, insects and 
songbirds and enhancing the site’s aesthetics (Rajpar 
& Zakaria, 2014). Likewise, constructed wetlands 
show the great potential to exert  CO2 sequestra-
tion from the atmosphere and keep it in the form of 
organic matter and biomass to absorb pollutants and 
restore the quality of water through the carbon and 
water cycles (Bernal & Mitsch, 2013; Mitsch et  al., 
2008; Ward et al., 2017; Wong et al., 2018). Further-
more, the Ramsar Convention on Wetlands empha-
sises that ‘climate change mitigation is all about car-
bon, but climate change adaptation is all about water’ 
(Sherren & Verstraten, 2013). However, traditionally, 
carbon mitigation, water supply, pollution control, 
agricultural resource management and energy gen-
eration have all been viewed as separate issues to be 
resolved independently. Nevertheless, it is becoming 
clear that interconnections between water, carbon 
and nutrient cycles can now be utilised in systems 
that fulfil numerous roles while increasing ecosystem 
health (Avellan et  al., 2017). Yet, less attention was 
given to researching constructed wetlands valuation 
to merge the processes of carbon sequestration and 
water rehabilitation as well as other values through 
the integrated approach of carbon and water cycles in 
its ecosystem services.

Commonly, constructed wetlands are used for 
water reuse projects on a local scale, such as garden-
ing and nutrient and pollutants removal in domestic 
settings, or on a larger scale, for irrigation of crops, 
public parks, golf courses, or to restore natural wet-
lands and groundwater (Metcalfe et  al., 2018; Nan 

et al., 2020; Rossa et al., 2019). Nevertheless, recent 
studies showed the possibility of leveraging con-
structed wetlands as a potential mitigation approach 
in addressing the carbon–water nexus, relating to 
those natural and engineered physicochemical pro-
cesses at the interface of the atmosphere between car-
bon and water cycles (Clarens & Peters, 2016; Masi 
et  al., 2018; Were et  al., 2019). Thus, constructed 
wetlands can address at least two critical aspects of 
sustainable development through the carbon–water 
nexus: clean water and sanitation (SDG6) and climate 
action (SDG13). SDG6 sets the baseline for water-
shed resources management to ensure the ecosystem 
and human health are assured by sustaining the ade-
quate quantity and acceptable quality of water supply 
(UN-Water, 2013). Hence, it is essential to assess the 
security of these resources by exploring the func-
tions and values of constructed wetlands. In addition, 
Masi et al. (2018) showed that constructed wetlands 
help reduce the urban heat effect, positively influenc-
ing the community’s health, offering integration of 
functions and values for people whereby the hidden 
benefits and values of constructed wetlands should be 
highlighted on top of the functions. However, func-
tions and values are often puzzled and considered 
identical, whereby this may lead to a lack of sound 
constructed wetland management, which could nega-
tively impact the ecosystem. Hence, two questions are 
raised in this review, i.e. ‘how does constructed wet-
land function in performing carbon sequestration and 
ensuring water security?’ and ‘how does constructed 
wetland provide values to the wellbeing of human and 
the environment?’. Therefore, this review focuses on 
the concept of carbon–water nexus of constructed 
wetlands based on its nature values and services that 
need an integrated approach to strengthen the con-
servation as well as adaptation and mitigation plan-
ning to reduce the climate change vulnerability and 
enhance the sustainable management of constructed 
wetlands.

To the best of our knowledge, no systematic review 
has examined the carbon–water nexus of constructed 
wetlands and the interactions between the values and 
services of constructed wetlands just yet. Hence, this 
review aims to identify the current research patterns 
concerning constructed wetlands over the last dec-
ade (2011–2020) and provide insight into the val-
ues and services provided by constructed wetlands. 
Secondly, the carbon––water nexus is examined by 
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assessing carbon sequestration and water rehabilita-
tion services by constructed wetlands through car-
bon and water cycles to determine the mechanisms 
taking place in constructed wetlands. The functions 
are hypothesised to be influenced by the values per-
ceived by the people. Since the values and services of 
constructed wetlands involve a multifaceted transac-
tion between people and the environment, this review 
needs to understand intrinsic and instrumental values 
and provide necessary information and strategies to 
help direct the future valuation of constructed wet-
lands, especially paths to achieving SDG 6 and SDG 
13. Moreover, this review potentially contributes to 
a better understanding of the vital nature benefits of 
constructed wetlands as a nature-based solution for 
mitigating and adapting to climate change as well as 
advocating for the long-term development of engi-
neered wetland ecosystem.

Methodology

A systematic literature review (SLR) was conducted 
to understand a subject matter and obtain a solid and 
determined response that engages with a research 
question. Conducting a systematic review of the 
values and services of constructed wetlands is criti-
cal, as there is a growing global debate about it. The 
method used in this review identifies gaps and directs 
future research on the nature values and services of 
constructed wetlands as a nature-based solution in cli-
mate change adaptation and mitigation. A systematic 

review allows researchers to identify patterns in pre-
vious studies and aid the understanding of related 
issues that can provide insights into the nature values 
and services of constructed wetlands in the context of 
the carbon–water nexus (Abu Samah et al., 2021). In 
addition, Mallett et  al. (2012) stated that the review 
process is strengthened by the transparent retrieval 
and selection process, covering more prominent 
research areas and controlling research bias based on 
the objectives. Hence, this review is guided by the 
Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) standard (Moher 
et al., 2009) and the strategies listed by Bramer et al. 
(2018). The review is rooted explicitly in the litera-
ture on constructed wetlands’ ecosystem services and 
their valuation. The search criteria were specified by 
combining the types of constructed wetlands, includ-
ing agriculture pond, lake (ex-mining pond and land 
change), saltpan and engineered wetlands (water 
treatment basin, dam and reservoir), with each of 
the four possible ecosystem services classified in the 
Millennium Ecosystem Assessment (MEA, 2005). 
Figure  1 presents a schematic diagram of the sum-
marised topics selected for this review. The literature 
search focused on two electronic databases, namely 
Scopus and Web of Science (WoS), to maximise the 
journal coverage. These two databases are the most 
wide-ranging database, encompassing more than 250 
fields of study, including the environment (Mohamed 
Shaffril et al., 2019). Figure 2 shows the flow of the 
selection process and method used in the systematic 
review guided by PRISMA methodology, consisting 

Fig. 1  A schematic dia-
gram of the topics selected 
for the review in this paper
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of four steps, i.e. identification, screening, eligibility 
and inclusion, which are described as follows.

Identification

The first step identified and searched related arti-
cles by identifying keywords on the databases using 
advanced search and search strings developed up to 
31 August 2020. The search strings used were (‘wet-
lands’ OR ‘wetland’ OR ‘lake’ OR ‘ex-mining lake’ 
OR ‘mining lake’ OR ‘pond’ OR ‘human-made’ 
OR ‘manmade’ OR ‘artificial’) AND (‘carbon stor-
age’ OR ‘carbon sequestration’ OR ‘carbon sink’ OR 
‘carbon capture’) AND (‘values’ OR ‘valuation’ OR 
‘intrinsic’ OR ‘relational’ OR ‘instrumental’) AND 
(‘water*’). In this step, a total of 533 articles were 
successfully retrieved from both databases.

Screening

Next, the screening step was conducted to remove 
duplicating papers whereby all articles retrieved were 
refined based on inclusion and exclusion criteria 
determined by the researcher. The first criterion was 
the literature type where this review only focuses on 
research articles because it represents the primary 

source that provides empirical data. Thus, other pub-
lications in the form of review articles, conference 
proceedings, books and book chapters were excluded. 
Besides, only articles published in English from 2011 
to 2020 were selected because it is critical to observe 
the research trends and issues regarding constructed 
wetlands’ values and services over the past ten years. 
Based on these criteria, refined results excluded 155 
articles and only 1 article was removed based on 
duplication screening. Most importantly, to increase 
the possibility of related articles, articles published 
in the research area of environmental science, social 
science, biological science and agriculture were 
selected.

Eligibility

A total of 377 articles were subsequently prepared for 
the eligibility step. The articles were further screened 
based on the titles, abstracts and main contents to 
ensure the articles fulfilled the criteria and could be 
used to review and achieve the aims. Consequently, 
339 articles were excluded because some of the arti-
cles did not provide full access, did not discover the 
types of constructed wetlands and did not focus on 

Fig. 2  A schematic 
diagram of the selection 
processes and methodology 
of the systematic review 
guided by PRISMA (Moher 
et al. 2009)
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the values and services provided by the constructed 
wetlands.

Inclusion

As a result, a total of 38 articles were ready to be 
analysed. Analysis of published papers included in 
this review, i.e. publication year, the types of con-
structed wetlands, the study’s geographic area and 
other related information, was extracted and analysed. 
The analysis provided related information to the cur-
rent research on constructed wetlands’ values and 
services, especially in carbon sequestration and water 
security. Microsoft Office Excel 2019 was used to 
analyse all the selected articles.

Results and discussion

Main findings of the study

Table 2 provides an overview of ecosystem services 
provided by constructed wetlands. The number of 
studies for regulating and provisioning services in 
climate regulation as well as water purification and 
treatment is high. However, there is not much study 
that integrates cultural services, like aesthetic, rec-
reational and heritage. Thirty-eight articles were 
published between 2011 and 2020 in peer-reviewed 
journals regarding constructed wetlands’ ecosystem 
services, comprising 27 studied sites. These papers 
reported studies from 15 countries where 37% were 
conducted in Asia and North America, respectively, 
followed by 21% of which were recorded in Europe 
and only 5% of articles were from South America. 
The largest number of studies were conducted in the 
United States of America (USA) with 31.5%. Figure 3 
shows the geographic distribution of the constructed 
wetlands’ ecosystem services studies where the num-
ber of studies shows in parentheses. Globally, studies 
on the constructed wetlands’ ecosystem services were 
relatively heterogeneous regarding the services and 
purposes. As shown in Fig.  4a, the number of pub-
lications assessing constructed wetlands increased 
exponentially over the first three years (2011–2014). 
After that, it fluctuated until 2020, with an average 
number of publications being 4 per year. Research-
ers had evaluated engineered wetlands (82%) more 
frequently than other constructed wetland types. The 

articles had been published in 27 journals with the 
highest percentage, 18% (n = 7) being published in 
Ecological Engineering (Fig. 4b). The quantification 
approach was the major type of analysis, including 
experiment or modelling (95%), qualitative assess-
ments and mixed studies (2.5%).

Implication and explanation of findings

The lack of an interdisciplinary approach makes data 
and information integration difficult. Most of the 
publishing efforts came from environmental fields 
focusing on instrumental value. Meanwhile, social 
sciences, crucially not only for the study of cultural 
services but also for most valuation methodologies 
and intrinsic value, are underrepresented in con-
structed wetlands’ ecosystem services. Comparisons 
between assessments have been challenging and 
inconsistent due to the variety of existing classifica-
tions of ecosystem services and value categories. 
Since this review identifies the constructed wetland’s 
values and services, we thus derived and mapped an 
integrated classification of constructed wetlands’ eco-
system services and nature values guided by the Mil-
lennium Ecosystem Assessment (MEA) framework. 
The detail of specific matter provided by constructed 
wetlands’ ecosystem services is described in Table 3, 
directly highlighting the functions and their benefits. 
The classification listed also guides the review of con-
structed wetlands’ ecosystem services and introduces 
the conceptual framework of carbon–water nexus, 
allowing the ecosystem services to be translated into 
suitable institutional and social responses.

Mechanism of carbon sequestration in constructed 
wetland

Constructed wetlands’ capacity in carbon seques-
tration is a vital function that provides an impetus 
undertaking for large-scale restoration and improve-
ment of the ecosystem. However, it is often hindered 
and mostly taken for granted. As illustrated in Fig. 5, 
the constructed wetland has been seen as a potential 
carbon sink, demonstrating the necessity of explicitly 
designed to store as much carbon as possible (Fen-
nessy et al., 2018). Generally, carbon sequestration in 
constructed wetland involves several processes, utilis-
ing the carbon dynamics and other elements within 
the systems at different scales to capture, sink and 
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store atmospheric carbon dioxide for the long term 
into the wetlands’ soil carbon pool with minimum 
possibilities of being released back into the atmos-
phere (Chen et  al., 2017). Thus, a change in carbon 
stock in or between wetland environments is repre-
sented as carbon sequestration. Ultimately, the value 
of carbon uptake by constructed wetlands is referred 
to the maximum rate of carbon storage (for exam-
ple, the rate of plant growth) and the greatest amount 
of carbon that may be stored (in plants or soil) on a 
given temporal and spatial scale (De Klein & Van der 
Werf, 2014; Lorenz & Lal, 2018).

The carbon balance is determined by two pro-
cesses, photosynthesis and respiration, majorly medi-
ated by plants. Plant communities are responsible for 
uptaking the atmospheric carbon dioxide through 
photosynthesis as their primary source and decay at 
the bottom soil, which can profoundly perform carbon 
sequestration (Luan et al., 2018). Mitsch et al. (2013) 
developed and ran a dynamic carbon model, showing 
carbon exchange occurs between the atmosphere and 
constructed wetlands (Fig.  6) in which soil carbon 
sequestration is determined by the cycle of  CO2 and 
 CH4 emissions exchange. With the aid of sunlight, 
wetland plants assimilate the biological  CO2 into 
their tissues and convert them to carbohydrates which 
are deposited into leaves, stems, roots and lastly in the 
soil as soil organic carbon or vice versa in soil res-
piration that occurs at the aerobic zone. Carbon sink 
and sequestration of constructed wetlands depend on 
the amount of dissolved organic matter enhanced by 
microbial activities in the soil (Rosli et  al., 2017). 
A further change of this biomass is profoundly reli-
ant upon hydrology whereby the slow rate of organic 
matter decomposition and high productivity of plants 
under saturated soil conditions may add to the seques-
tration of carbon caused by the anoxic wet condition 
of water inundation (Iseyemi et al., 2019).

Factors affecting carbon sequestration in constructed 
wetland

Several factors, such as the establishment of domi-
nant plants over the age of constructed wetlands, 
hydrology (soil saturation) and seasonal climate (tem-
perature) as described below, are important natural 
features facilitating wetland carbon pool and accumu-
lation. Table 4 shows the literature regarding carbon Ta
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sequestration in constructed wetlands, including the 
dominant plants and the age of constructed wetlands.

Dominant plants over the age of constructed 
wetlands’ ecosystem services

Plants are often employed in constructed wetlands 
whereby plant diversity always affects the potential of 
constructed wetland to store carbon by supplying the 
available substrate. Previous studies higher (Huang 
et al., 2019; Yang & Yuan, 2019) showed a relation-
ship between plant types over the age of constructed 
wetlands in carbon accumulation enhancement. For 
example, the rates are higher in the saline constructed 
wetlands vegetated with mangrove species between 
323 and 635 g C  m−2  y−1, showing significant carbon 
content in the soil of the mangrove habitat. In addi-
tion, researchers found cattail (Typha species) and 
common reed (Phragmites species) to be the most 
common plant species planted or naturally colonised 
in the constructed wetlands. These emergent plants 
are expected to introduce an important amount of 
carbon into the soil which is known as superior bio-
mass producers (Avellan et al., 2017). Overbeek et al. 
(2018) found a higher fraction of organic matter even 

in the sediment of 3-year-old constructed wetlands 
planted with Typha latifolia and Typha angustifolia, 
and the linearity model shows the constructed wet-
lands have the potential to sequester carbon. The 
carbon accumulation recorded in constructed wet-
lands dominant with Typha species is between 23 
and 267 g C   m−2   y−1 (Bernal & Mitsch, 2014; Guo 
et al., 2017; Iseyemi et al., 2019; Reddy et al., 2016). 
Mitsch et  al. (2014) showed plant succession for 
20 years of constructed wetlands dominated by Typha 
species remarkably possesses a high nutrient content 
with greater productivity contributing to the carbon 
pool and sequestration rate.

Meanwhile, the carbon assimilation rate by Phrag-
mites species is remarkable as this species can absorb 
up to 700 ppm of  CO2 concentration (Kanungo et al., 
2017). Further, the roots of Phragmites may reach 
deeper than any other hydrophyte (root depth up to 
3  m), helping the plant take up water and wetland 
nutrients (De Klein & Van der Werf, 2014; Zhang 
et  al., 2016). This vascular plant consists of a high 
content of lignocellulosic components, such as car-
bon and nitrogen, that directly supplies the organic 
matter into sediment through decomposition (May-
nard et  al., 2011; Reddy et  al., 2016). For instance, 

Argen�na (2)

Germany (3)Canada (2)

China (7)

India (1)

Iraq (1)Italy (1)
Korea (1)

Lebanon (1)

Malaysia (2)
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Fig. 3  Geographic distribution of relevant constructed wetland studies
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De Klein and Van der Werf (2014) recorded the high-
est carbon accumulation with net values in the range 
of 0.27–2.40  Mg  C   ha−1   y−1, signifying 12 to 67% 
 CO2 fixation. The carbon pool significantly increases 
between 51 and 82% after 3 to 15 years with Phrag-
mites australis established as dominant plant commu-
nities (Guo et al., 2017; Zhang et al., 2016).

Other species, such as Juncus and Mimulus, also 
show a significant capability to store the above-
ground carbon even though at a young age of creation, 
which is about 2 to 3 years. In addition, their inclu-
sion improves the relationship between plant cover, 

indicating that these species provide a non-negligible 
contribution to overall carbon storage (Means et  al., 
2016; Shiau et al., 2016). Thus, the carbon pool and 
accumulation are most likely based on plant types and 
local availability, climate adaptability and tolerance 
to influent water quality (Wu et al., 2015).

Hydrology (soil saturation)

Amount of water, water retention time and water 
depth are also key factors influencing wetland car-
bon storage. Due to their high productivity and slow 

Fig. 4  Data and analysis 
from the selected con-
structed wetland assess-
ment. a Number of studies 
per year according to types 
of constructed wetland. b 
Breakdown of studies pub-
lished in various journals
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rate of organic matter decomposition caused by the 
anaerobic conditions created by water inundation, 
wetland plant materials sequester carbon more effi-
ciently under saturated soil conditions. Furthermore, 
different gradients of water depth in the landscape 
affect vegetation distribution and aquatic species, 
thus influencing organic matter accumulation. For 
instance, Xiao et al. (2015) showed a significant dif-
ference in carbon pools in different submerged zones. 
The inundated zone for the whole year with a water 
depth greater than 1.50  m managed to pool about 
55  g  C   kg−1 compared to the emergent and draw-
down zones (0.3–1.5 m) where the average carbon is 
41 g C  kg−1 and 26 g C  kg−1, respectively.

Meanwhile, Bernal and Mitsch (2014), De Klein 
and Van der Werf (2014), and Maynard et al. (2011) 
showed the open water area has a high rate, indicat-
ing that they receive a vast amount of organic matter 
within the wetlands’ plant organic waste and seques-
tration rates were found similar to that of natural wet-
land. The modification to the drainage system along 
with nutrient-rich water input not only stimulates 
the plants’ growth but enhances soil saturation and 
anaerobic condition that influences biogeochemical 
mechanisms, like nutrients absorption, organic mat-
ter decomposition and denitrification, thus increasing 
carbon (Guo et al., 2017; Iseyemi et al., 2019). As a 
result, even a slight change in wetland equilibrium 
shows a different change in total wetland functioning 
in carbon sequestration.

Seasonal climate (temperature)

The local environment and seasonal climate relate to 
temperature control of the microbial activity affecting 
the soil organic matter decomposition in the wetlands. 
The microbial population directly shifts with the 
temperature and the oxygen available in the produc-
tion of soil organic matter. Microbial decomposition 
rate is slow as soil respiration in high humidity and 
low temperature (anaerobic condition) may enhance 
the carbon content. The biological reaction is esti-
mated to double for every 10 °C increase in tempera-
ture. Thus, warming is likely to increase world plant 
biomass, while decreasing the soil carbon pool (Jan 
et  al., 2020). Bernal and Mitsch (2014) and Santos 
et  al. (2018) showed that temperate freshwater wet-
land typically has more significant soil organic carbon 
accumulation than tropical wetland because of lower 

temperature and longer hydrological pulse. Further-
more, the current study shows that comparable car-
bon pools ranging between 27.30 and 28.48 kg C  m−2 
in summer and 23.98 and 31.09  kg  C   m−2 on aver-
age in winter are a good representation of temperate 
hydro-period wetland (Iseyemi et al., 2019).

Water security in constructed wetland

The UN-Water conceptual framework for water secu-
rity is shown in Fig. 7, which encourages a collabora-
tive approach to solving contemporary water-related 
issues. Good governance, transboundary cooperation, 
financing, peace and political stability are impor-
tant components of aquatic system management to 
meet future water demands. As for good governance, 
adequate legal, infrastructure, institution and capac-
ity should be in place. Transboundary cooperation 
needs sovereign states to consult and coordinate their 
actions to meet the diverse and, at times, compet-
ing interests of mutual benefit. Conflicts’ negative 
consequences, such as reduced water quality and/or 
quantity, compromised water infrastructure, human 
resources, related governance and social or political 
systems, should be avoided to ensure water security 
peace and political stability. At the same time, inno-
vative financing sources supplement public-sector 
funding, such as private-sector investments and 
micro-financing schemes.

Furthermore, these factors contribute to ecosystem 
protection, water-related hazard reduction, climate 
change adaptation, safe drinking water access, as 
well as human health and well-being advances (UN-
Water, 2013). This approach directly emphasises the 
importance of understanding the diverse functions of 
aquatic ecosystems, such as constructed wetlands and 
their advantages in terms of health and well-being, 
livelihoods, water security, and more recently, cli-
mate change mitigation and adaptation (Kansoh et al., 
2020). This approach also underlines the need for 
measures to reduce pollution that renders water una-
vailable or unsuitable for other purposes, contributing 
to water scarcity. Constructed wetlands are generally 
less expensive than complex infrastructure solutions 
for pollution abatement, stormwater management and 
coastal zone protection while providing various eco-
logical functions and other values.
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Constructed wetlands as pollution abatement

A literature survey shows that constructed wetlands 
not only behave like a carbon sink but a transformer 
of pollutants and nutrients, depending on the physi-
cal, chemical and biological characteristics of the 
constructed wetlands’ environment. The constructed 
wetlands may also enhance the ecological carry-
ing capacity of the ecosystem through sustainable 
treatment of wastewater (Galve et  al., 2021; Rahi & 
Faisal, 2019; Sherren & Verstraten, 2013). Numer-
ous studies (Abi Saab et al., 2018; Hernández-Crespo 
et al., 2017; Reyes et al., 2020) corroborated that the 
primary focus of constructed wetlands is to remove 
contaminants from wastewater, including biologi-
cal oxygen demand, nutrients, suspended solids and 
heavy metals. In addition, microbial decomposition, 
assimilation, precipitation and adsorption to soil par-
ticles are all chemical and biological processes that 
function within the wetland environment, contribut-
ing to enhanced water quality. It is also an indicator 
of constructed wetlands’ performance in ameliorat-
ing water quality and helps recover eutrophic water 
bodies (Hernández-Crespo et  al., 2017; Irwin et  al., 
2018). In this context, constructed wetlands can 
assist local governments in finding a balance between 
watershed environmental protection, social and 

economic development, thereby helping in the devel-
opment of sustainable policies (Abi Saab et al., 2018; 
Wong et al., 2018).

An interesting project was carried out in Yong-
ding River Green Ecological Corridor, Beijing, China 
(Wong et al., 2018), which illustrates the potential of 
constructed wetlands and artificial lakes as a long-
term green infrastructure solution. This green project 
is a core concept using the ecosystem approach to 
advance urban sustainability in improving ecosystem 
services, such as water storage, water purification, 
local climate regulation and expanded wetland-based 
nature reserves to preserve biodiversity and aesthetic 
values to meet high residents’ demands.

Therefore, following the green infrastructure prin-
ciples, phytoremediation becomes a significant and 
integral element to favour the constructed wetlands’ 
improvement in a sustainable environment. Phytore-
mediation is the chemical and biological efficiency of 
plant activities in purifying, debilitating or removing 
environmental pollutants in water, wastewater, sludge 
and soil via biosorption (Jamion et  al., 2021). How-
ever, studies showed that plant species may differ in 
their ability to absorb nutrients. Table 5 summarises 
over 15 dominant plant species established worldwide 
to remove pollutants and treat various water bodies. 
This review reveals that Phragmites are emergent 
plant species that are highly planted, particularly in 
Asia. In addition, Avellan et  al. (2017) stated that, 
globally, wastewater treatment plants remove about 
60 million kg of biochemical oxygen demand (BOD) 
every year, over 4 million kg of nitrogen and roughly 
a million kg of phosphorus.

Sediment trapping is a significant physical func-
tion of the constructed wetlands. By retaining sedi-
ment run-off flowing through the steady hydraulic 
substrate into nearby water bodies, constructed wet-
lands filter suspended particles and decrease erosion 
(Manzo et  al., 2020). In addition, it encourages silt 
to settle out of suspension in the water column and 
collect in the wetland substrate by reducing flow 
velocity. Suspended solids are settled by chemical 
flocculation through the electrostatic interaction and 
microbial metabolism of colloidal solids correlated 
with the plants’ roots (Rahi & Faisal, 2019). As a 
result, the purity of nearby water bodies improves. 
Rahi and Faisal (2019) assessed the performance of 
constructed wetlands planted with Phragmites austra-
lis to treat municipal wastewater and found that the 

Landscape Scale

Wetland Scale

Process Scale

Carbon 
sequestration

Land use

Climate 

Geology 

Upstream 
Area 

Hydrology 

Sedimentation

Plants 

Retention
time

Morphology 

Soil Redox reaction

Biomass 
Temperature 

Fig. 5  Driving factors affecting the carbon sequestration 
capacity across three scales  (adapted from Fennessy et  al., 
2018)
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average removal efficiencies of total suspended sol-
ids (TSS) typically range from 50 to 80%. The find-
ings are in agreement with the results of Abi Saab 
et al. (2018) and Manzo et al. (2020) who obtained a 
more significant removal efficiency of TSS (> 80%), 
showing that constructed wetlands are efficient in the 
removal of suspended solids from various types of 
water.

Constructed wetlands are notable for removing var-
ious types of chemical pollutants, such as biological 
oxygen demand (BOD), nutrients and heavy metals. 
Biological oxygen demand (BOD) is removed from 
runoff water through aerobic and anaerobic microbial 
degradation processes (Rahi & Faisal, 2019). Wet-
land plants stimulate microbial activity by provid-
ing a leaf and root substrate for bacterial biofilms to 

grow on and further supply dissolved oxygen (Rahi & 
Faisal, 2019). Wetland plants have a unique adapta-
tion to anaerobic soil conditions and transfer oxygen 
to the root systems. Furthermore, the wetland plants 
produce oxygen, resulting in greater dissolved oxy-
gen concentration in the water and the soil around the 
plant roots. The presence of these oxidised microsites 
improves the system’s ability to decompose pollutants 
through aerobic bacterial breakdown (Oleksińska, 
2015). Generally, the previous study found that sig-
nificant BOD removal efficiencies are between 30 
and 70%, depending on the types of wastewater. For 
example, Reyes et  al. (2020) reported the maximum 
load of BOD from livestock wastewater is reduced 
from 301.59 kg/d to 63.57 kg/d, contributing to up to 
50% of removal. In addition, Abi Saab et  al. (2018) 

Fig. 6  The process 
involved in carbon seques-
tration ( adapted from 
Mitsch et al., 2013)
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recorded that the constructed wetlands treat more 
than 20% of the Litani River flow compared to data 
obtained in 2016. A pretty similar result was obtained 

by Rahi and Faisal (2019) where their study shows 
the constructed wetlands have been successfully 
used to treat the municipal wastewater with 55.4 and 

Table 4  Carbon sequestration in constructed wetlands reported in the literature

Constructed wetland ecosystem services age is the period of constructed wetland has been designed for land reclamation following 
mining or as a mitigation measure for natural areas lost to land development
BGC: Belowground carbon, AGB: Aboveground biomass, AGC: Aboveground carbon
*Measured in kg C m.−2

**Measured in Mg ha.−1

Dominant plant types Pool Site study Constructed wetland 
ecosystem services 
age

Carbon accumula-
tion (g C  m−2  y−1)

Authors

Typha latifolia BGC Arkansas State 
University’s (ASU) 
Agricultural Research 
Facility

9 23–30* Iseyemi et al. (2019)

Black mangrove 
species, Avicennia 
marina

Datang Saline Con-
structed Wetland 
(DSCW)

– 323–460 Yang and Yuan (2019)

Mangrove—Rhizophora 
stylosa

Yuanjhongkong con-
structed a mangrove 
wetland

12 635 Huang et al. (2019)

Phragmites australis, 
Carex schmidtii, and 
Thelypteris palustris 
community

Paddy field in Jilin 
Longwan

15–30 270–491 Guo et al. (2017)

Cattail (Typha spp.) 
and Schoenoplectus 
americanus

North Carolina A&T 
State University 
swine unit

12 100–175 Reddy et al. (2016)

Leersia hexandra, 
Myriophyllum spi-
catum, Potamogeton 
spp. and Chara spp

Dam construction at 
Lashihai

20 56–146 Xiao et al. (2015)

Cattail (Typha spp.) Olentangy River Wet-
landResearch Park

10 181–193 Mitsch et al. (2013)
15 219–267 Bernal and Mitsch 

(2014)
Polygonum lapathifo-

lium
Constructed wetlands at 

the San Joaquin River
13 179–249 Maynard et al. (2011)

Phragmites Karka AGC Constructed wetland in 
Ujjain city

2 and 8 – Kanungo et al. (2017)

Juncus spp, Memulus 
spp, Eleocharis spp, 
Carex vulpinoidea 
spp.

AGB, AGC Ahn Wetland Meso-
cosm Research 
Compound

2 30.8–78.2 Means et al. (2016)

Grassland GHG flux Artificial lake 7 75.22–82.27** Santos et al. (2018)
Juncus roemerianus Brackish marsh in Car-

teret County, North 
Carolina

3 0.014–0.037 Shiau et al. (2016)

Phragmites australis Heihe watershed – 940–1030 Zhang et al. (2016)
Phragmites vegetation Lankheet lake con-

structed wetland
– 617–977 De Klein and Van der 

Werf (2014)
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72.7%. Regarding nutrients removal, plants absorb 
and assimilate nutrients (nitrogen and phosphorus) in 
the constructed wetlands that exist in inorganic forms, 

such as nitrate and phosphate ions, allowing them 
to be used for biomass production (Rahi & Faisal, 
2019). Some plant species have a high preference 

Fig. 7  The components 
of aquatic system manage-
ment to meet future water 
demands in the UN Water’s 
conceptual framework for 
water security  (adapted 
from UN-Water, 2013)

Table 5  Summary of the established plants by region to remove pollutants and treat various water bodies

COD chemical oxygen demand, TSS total suspended solids, BOD5 biological Oxygen demand, TP total phosphorus, TN total Nitro-
gen, Cu Copper, Zn Zinc, Mn Manganese, Fe Iron, ND non-existent data

Regions Countries Plants Water types Removal of pollutants References

Asia Lebanon Phragmites australis River COD, TSS,  BOD5, TP, 
TN, Cu, Zn, Mn, Fe, 
E-coli, Salmnonella, 
Faecal coliform

Abi Saab et al. (2018)

Iraq Phragmites australis Municipal wastewater TSS,  BOD5, TP Rahi and Faisal (2019)
Malaysia S. grosus & E. dulcis Constructed lake COD,TP, Fe Sidek et al. (2020)

E. crassipes S. molesta 
& P. stratiotes

Sidek et al. (2018)

Korea Typha, Phragmites, & 
Miscanthus

Livestock wastewater COD, TSS,  BOD5, TP Reyes et al. (2020)

China Phragmites & Typha 
latifolia

Constructed lake TP, TN Wong et al. (2018)

Europe Belgium reed bed (Phragmites 
species)

Pig farmyard waste-
water

COD, TP, TN Boets et al. (2011)

Spain ND Eutrophic water TP, TN Hernández-Crespo et al. 
(2017)

Portugal grassland Artificial lake TN Santos et al. (2018)
Sweden J. effusus, S. lacustris, 

Spar ganium erectum, 
Iris pseudacorus, 
Carex riparia, Glyce-
ria maxima

Cattle farm rainwater 
runoff

TP, TN Rossa et al. (2019)

North America USA Nuphar, Nymphaea, 
Thalia, Pontederia, 
Eleocharis, Sagittaria, 
Cladium

Created freshwater 
wetland

ND Zhang et al. (2017)

South America Argentina Phragmites australis Wastewater and flood 
prevention

TSS, TN Manzo et al. (2020)
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for one type of ionic form over another. For exam-
ple, Abi Saab et  al. (2018); Rahi and Faisal (2019); 
Reyes et  al. (2020); and Wong et  al. (2018) showed 
that the average removal of total phosphorus recorded 
by Phragmites and Typha species is around 55–66%. 
However, other species, such as Scirpus, Eleocharis 
and Juncus, show greater uptake and removal effi-
ciencies between 50 and 90% (Rossa et  al., 2019; 
Sidek et  al., 2018, 2020). In addition, the removal 
efficiencies of total nitrogen vary from the lowest 
0.4% by grass to the highest 90% by Phragmites spe-
cies (Abi Saab et al., 2018; Rossa et al., 2019; Santos 
et al., 2018). Nitrogen removal is complex and redox 
potential is a critical parameter that affects nitro-
gen oxidation and reduction in constructed wetlands 
(Rahi & Faisal, 2019). Changes in nutrient uptake and 
removal between plant species are most likely due to 
differences in growth stages, nutrient absorption and 
use efficiencies.

Furthermore, trace heavy metals are removed from 
runoff wastewater through plants with different physi-
ological processes that allow metal tolerance and 
absorption capacity (Sidek et al., 2018). For instance, 
studies showed Scirpus and Eleocharis species have 
an excellent removal efficiency for iron (Fe) which is 
greater than 80% (Sidek et  al., 2018, 2020), and on 
average, for some metals, copper (Cu), zinc (Zn) and 
manganese (Mn) by Phragmites species (Abi Saab 
et al., 2018). Such performance might be due to met-
als cannot be removed from water directly by utilising 
biological processes like that of organic pollutants. 
Sidek et al. (2020) described heavy metal removal by 
plants from a solution involves two phases whereby 
the first phase consists of the processes, namely ion 
exchange, chelation and adsorption, while the second 
phase involves heavy metal precipitation induced by 
roots. In addition, the plants perform phytoremedia-
tion by a process called rhizofiltration.

Additionally, constructed wetlands are also shown 
to be highly effective for removing pathogens from 
river water. Pathogenic pollutants, such as bacteria, 
are eliminated and deactivated in the wetland system 
through several factors, such as vegetation, sorption 
to sediments, sunlight intensity, water retention and 
pH water (Abi Saab et  al., 2018). Direct evidence 
shows that if the water chemistry is good, it precedes 
higher biological where taxa species are found dur-
ing the treatment pathway as macro-invertebrates 
are directly affected by the physicochemical water 

environment. Yet, it is a significant indicator of treat-
ment efficiency and biodiversity level. According to 
Sartori et al. (2015), macro-invertebrate taxa not only 
act as litter decomposers but also support other wet-
land functions, such as regulating plant communities 
and nutrient cycling. These valuable elements con-
tribute to transferring nutrients from sediments, detri-
tus and water columns, making a net contribution to 
the environmental system (Manzo et al., 2020).

The performance of constructed wetlands in pol-
lution abatement is well established where Typha, 
Phragmites and Eichhornia are some of the identified 
wetland plants with good adaptability and tolerance 
to contaminated water and are effective phytoreme-
diators for water treatment and purification. Addition-
ally, the treated water and wastewater may supply for 
other water use, such as drinking and irrigation, after 
considering the required permissible levels for water 
as supporting the water shortage source of freshwa-
ter (Rahi & Faisal, 2019; Zhang et al., 2013). Besides, 
constructed wetlands provide biological functions 
that include productivity, biodiversity and life sup-
port. Therefore, the constructed wetlands need best 
management practices to ensure water security in 
which to enhance the quality of the ecosystem and 
human health on a local and regional scale.

Carbon–water nexus in constructed wetlands

There has been little study discussing the car-
bon–water nexus in which only 16% (n = 6) articles 
collated are seen indirectly applying the carbon–water 
nexus concept in assessing the multi-functions of 
wetlands (Maynard et  al., 2011, 2014; Mitsch et  al., 
2014; Santos et  al., 2018; Wong et al., 2018; Zhang 
et  al., 2016). For example, Santos et  al. (2018) 
showed a significant correlation between carbon stor-
age, water purification and sediment retention at the 
constructed lake, where its ecosystem can effectively 
provide long-term regulating and provisioning ser-
vices to enhance water provision and increase carbon 
storage. Maynard et  al., (2011, 2014) also found a 
similar result where through carbon–water nexus, two 
constructed wetlands with suitable and effective plant 
diversity have provided ecosystem services of carbon 
sequestration, nutrient retention and habitat support 
for 20 years (Mitsch et al., 2014).

Researchers had conducted various assessments 
to evaluate and increase the functions and services 



1220 Environ Geochem Health (2023) 45:1201–1230

1 3
Vol:. (1234567890)

of constructed wetlands associated with climate 
change mitigation. The increase in carbon stored in 
soil and biomass is greatly beneficial for the ecosys-
tem services and functions, directly helping in the 
provisioning and supporting services and maintain-
ing biodiversity. Understanding the different use and 
management systems of constructed wetlands would 
enhance carbon storage and other ecosystem services. 
Healthy constructed wetlands with intact conditions 
will hugely contribute to increasing resilience towards 
the climate change impacts. However, there is a lack 
of study in assessing the integration of constructed 
wetlands’ nature values and services whereby the 
regulating and provisioning services of constructed 
wetlands have gained more attention than socio-cul-
tural services. The selection of ecosystem services 
to be evaluated may reflect the level of policy con-
cern of these services in each country. For example, 
climate change is a challenge in the North American 
region, and hence, constructed wetlands have been 
extensively focused on carbon sequestration. How-
ever, constructed wetlands’ ecosystem services map-
ping the importance of socio-cultural service is still 
less established (Xu et al., 2018). Socio-cultural ser-
vices are assessed mainly by economic approaches 
(Dang et  al., 2021). Therefore, further assessments 
that encompass multiple ecosystem services, espe-
cially socio-cultural services, are required to evaluate 
different values adequately in which constructed wet-
lands provide ecosystem services to different groups 
of stakeholders and support policymakers to manage 
and sustain constructed wetlands’ ecosystem.

Optimisation of the interdependent constructed 
wetlands’ ecosystem services is also needed, and it 
is critical to identify the entire bundle of constructed 
wetlands’ ecosystem services related to increasing 
carbon storage, water security and other trade-offs 
when examining the multifaceted nature of liveli-
hoods. Insufficient data and knowledge of the utilisa-
tion of carbon–water nexus in the constructed wet-
lands will limit the nature values of this ecosystem, 
consequently, hindering the definite benefits. Lack 
of information on the carbon–water nexus makes 
it difficult to assist wetland management, local and 
international model development efforts to regain 
the socio-ecological benefits from the nature values 
of constructed wetlands (Stringer et  al., 2012). To 
draw an understanding of how the processes of car-
bon–water nexus in constructed wetlands contribute 

to climate change mitigation and water security, we 
highlight the concept, processes and mechanisms tak-
ing place through carbon and water cycles, and to 
realise the benefits provided by constructed wetlands, 
a conceptual framework of integrating ecosystem ser-
vices dichotomy between the importance of nature 
values will be proposed at the subsequent section.

Definition of nexus

The original concept of nexus comes from phys-
ics where nexus is defined as the dynamic interrela-
tionship of two or more objects or the motion forms 
through their interconnections and interactions (Li 
et  al., 2020). (Abdi et  al., 2020; de Grenade et  al., 
2016; Smajgl et al., 2016) had provided various defi-
nitions of nexus, but a comprehensive explanation 
could not be established just yet and many studies 
focused on the nexus between food, energy and water.

Generally, nexus can be defined in two definitions. 
First, nexus is described as the interactions between 
different sectors (or subsystems) within the system 
boundary, such as water and carbon systems (Zhang 
et al., 2018). Cai et al. (2018) further illustrated that 
nexus is regarded as interconnected physicochemical 
processes, input and output relationships of produc-
tion, as well as infrastructure and institutions’ interac-
tions. This definition focuses on interpreting interac-
tions between systems in understanding the complex 
system’s overall characteristics through its compo-
nents’ interlinkages in which it emphasises that one 
system’s deficiencies will pressure the other systems. 
Thus, the carbon–water nexus requires holistic man-
agement of these two systems as they are both critical 
in balancing the environment.

Second, nexus is defined as an analysis method or 
approach to quantify the nexus nodes’ links, includ-
ing water, food and energy (Abdi et  al., 2020). For 
instance, nexus by FAO’s approach analyses the 
nature–human system’s relation and creates inte-
grated management of natural resources across dif-
ferent scales and sectors by building up the syner-
gies and trade-offs (FAO, 2014). Smajgl et al. (2016) 
illuminated this approach as dynamic relationships 
to identify the emergence of cross-sector linkages. 
Meanwhile, de Grenade et al. (2016) viewed the con-
cept of nexus on environment systems needs an ideal 
engagement of ecological-social design and adap-
tive capacity research to focus on the constraints and 



1221Environ Geochem Health (2023) 45:1201–1230 

1 3
Vol.: (0123456789)

abilities of environment systems and human pro-
cesses’ complex existence, particularly in adaptation 
to climate change. However, Keskinen et  al. (2016) 
argued that the concept of nexus is so intense that 
it could not be explained from a single standpoint. 
Thus, they provided the definition comprising an ana-
lytical technique, either quantitative or qualitative, 
governance tools in enhancing collaboration between 
related sectors and the emerging disciplines.

Processes and mechanisms of carbon–water nexus 
in constructed wetlands

By adopting the definitions, the carbon–water nexus 
is conceptualised as interlinkages between engineered 
and natural physicochemical processes at the interface 
between carbon and water cycles. The carbon–water 
nexus presents the interdependencies between the 
carbon and water systems as they are twosome in 
processing, supplying, distributing and using envi-
ronmental resources. Anthropogenic climate change 
is driven by changes to the carbon cycle, one of the 
most immediate ways in which we can observe its 
impact is on the water cycle (Clarens & Peters, 2016). 
The advancement of carbon–water nexus knowl-
edge in mitigating pollution effects would be cru-
cial to developing long-term climate change adap-
tation strategies. A warmer atmosphere will alter 

precipitation patterns, reduce freshwater reserves and 
drive extreme weather. Endeavours to manage carbon 
emissions will have significant implications on water 
cycles whereby the carbon–water nexus calls for inte-
grated management to promote sustainable develop-
ment of constructed wetlands and reduce the unex-
pected effect on the socio-ecological system. Hereof, 
it diverges from the conventional decision-making 
practices which previously considered within separate 
disciplines (Liu et al., 2015).

Figure  8 illustrates the carbon–water nexus, 
showing the processes and mechanisms of con-
structed wetlands that consist of carbon movement 
from the atmosphere across the landscape and soil 
into the water system as a watershed (Ward et  al., 
2017). (1) First, atmospheric particles, includ-
ing greenhouse gases, such as  CO2, coming from 
natural and anthropogenic activities, return to the 
atmosphere and some condense to form a cloud. 
(2) Second, raindrops capture organic and inor-
ganic carbon during rain by scavenging particles 
and absorbing organic vapours as they fall towards 
the earth. (3) At the same time, plants fix atmos-
pheric  CO2 by photosynthesis and release a portion 
of it back into the atmosphere through respiration. 
(4) Plant-derived organic carbon is converted and 
preserved by microbial and fungal activities in the 
organic soils when organic carbon combines with 

Fig. 8  The concept of 
carbon–water nexus in con-
structed wetland consisting 
carbon movement from 
the atmosphere across the 
landscape and soil into the 
water system as a watershed  
(adapted from Ward et al., 
2017)
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roots and sediment to form organic soils. (5) Plants 
absorb water dissolved organic and dissolved inor-
ganic carbon and settle aerosols as it passes by for-
est canopies (throughfall), plant trunks and stems. 
Thus, water will seep into soils and groundwater 
reservoirs, triggering bio-physicochemical transfor-
mations, overland flow happens when soils are fully 
saturated or runoff occurs faster than soil saturation. 
(6) Organic carbon from the terrestrial and water 
biosphere is decomposed by microbial organisms 
in the constructed wetlands and physical decom-
position, such as photo-oxidation, resulting in  CO2 
fluxes on a scale comparable to the amount of car-
bon sequestered annually by the constructed wet-
lands. Decomposition of macromolecules, such as 
lignin from plants into smaller carbon components 
and monomers, contributes to  CO2 conversion, met-
abolic intermediates and biomass. (7) Constructed 
wetland stores organic carbon in sediment but it 
also has a lot of net heterotrophy in the water col-
umn, which results in a net  CO2 flux to the atmos-
phere and naturally sequestering a fraction of fixed 
 CO2. (8) and (9) Constructed wetlands may produce 
healthy air and improve water quality which directly 
enhances human well-being, such as providing rec-
reation, leisure and the biodiversity growth of con-
structed wetland ecosystem.

Realising the carbon–water nexus approach prac-
tically will enhance the functions and services of 
constructed wetlands. The trade-off benefit is gained 
between the interchange of environmental sustain-
ability and human well-being. However, the car-
bon–water nexus of artificial, constructed or restored 
wetlands is dealt with the major human intervention, 
making it different from natural wetlands whereby 
lack of knowledge of the values and services of this 
ecosystem will limit its use. The carbon–water nexus 
is influenced by management practices whereby many 
challenges limit the optimisation of ecosystem ser-
vices, but looking at the fringe benefits provided by 
constructed wetlands, like nature values, it is possi-
ble (Maynard et al., 2011; Wong et al., 2018; Zhang 
et al., 2016).

Nature values of constructed wetlands

Constructed wetlands consist of vital nature values 
that provide various services and functions (regu-
lating, provisioning and cultural services) that are 

mutually dependent. To a certain extent, constructed 
wetlands’ ecosystem values benefit people differently, 
where different people view different values towards 
this ecosystem. The values can be antithetical by dif-
ferent philosophies and scholars whereby the values 
are from a strictly useful stand in which human thinks 
distinctly from the rest of nature and to a viewpoint 
where human and other living things are deemed to 
deserve equal recognition (Arias-Arévalo et al., 2018; 
Hejnowicz & Rudd, 2017; Lockwood, 1999). The 
United Nations-Intergovernmental Science-Policy 
Platform on Biodiversity and Ecosystem Service 
(IPBES) listed various value definitions in which 
the ’value’ can be referred to as a simple measure, a 
preference of a person towards something, a belief 
or principle regarding culture or the importance of 
something to others or itself. Besides, values are also 
influenced and changed over time by social network-
ing (Diaz et al., 2014), whereby the constructed wet-
lands’ valuation spectrum is broad through the inte-
gration of values.

As outlined in the ecosystem framework by the 
Millennium Ecosystem Assessment (MEA, 2005) 
(Table  1), the ecosystem emphasises biodiversity 
and ecosystem for a human being; therefore from 
the beginning, it has a clear focus on nature’s instru-
mental values. The concept of instrumental values 
is usually clear-cut in environmental valuation and 
ecosystem services in which the objects or things are 
means to some external end (Pascual et al., 2017) and 
it is always conditional (Sandler, 2012). This con-
cept holds to the anthropocentric nature, represent-
ing a conjugal between science and economic view 
whereby the definite purpose has been validated to 
decision-makers why this ecosystem is essential and 
should be protected. Hence, it is a threat when only a 
part of services, functions and values are selected for 
further research because it is easy to convey or have a 
more direct policy or act relevance.

As a response to the MEA framework, environ-
ment ethicists (non-anthropocentric) in the field 
of conservation biology defended that the ecosys-
tem that consists of biodiversity also has its values, 
namely intrinsic values (Rolston III, 2006; Sandler, 
2012). Intrinsic values mean the values of an object 
in and of itself/themselves or as a means to an end. 
Natural entities, including biotic species in the eco-
system, have intrinsic values in the advantage of their 
independence from people’s control. In ecosystem 
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services, the grounding or foundation for intrinsic 
values is seen from two viewpoints, i.e. objective and 
subjective intrinsic values (Sandler, 2012). All living 
organisms have objective intrinsic value—the good of 
their own, relatives to its features or properties in vir-
tue of which it is valuable, which is discovered rather 
than generated by a people.

In contrast to objective intrinsic value, subjective 
intrinsic value is valued for what it is, not for what 
it can do. People determine this value through their 
evaluative attitudes or judgements, and it does not 
exist before or without them. People widely appraise 
subjective intrinsic value for various reasons, such as 
cultural and spiritual significance, personal memen-
toes, historical sites or performances due to their 
embodies, rarity, beauty or representation. Therefore, 
subjective intrinsic value can be distinguished from 
someone’s preferences and approachable by persua-
sion and education (Gómez-Baggethun et al., 2014). 
Hence, people’s views of habitats and ecosystem 
services, like constructed wetlands, have been vital 
aspects of the social-ecological system and sustain-
ability management. Nevertheless, research on socio-
ecological systems and environmental management 
generally neglects the study of values on human per-
ceptions. In assessing ecosystem services, financial 
valuation methods have gained more attention than 
other valuation methods, emphasising instrumen-
tal values and disregarding intrinsic values (Arias-
Arévalo et al., 2017).

However, the current study shows that the assess-
ments of ecosystem services mainly focus on sup-
porting general sustainability management, land-use 
change planning and policies as well as conserva-
tion action. There is limited evidence that has been 
provided on valuing the nature values of constructed 
wetlands, especially intrinsic values that are rarely 
reported. The majority of the previous studies under-
pinning the MEA’s framework emphasised the eco-
systems for human wellbeing, aiming at nature’s 
instrumental values and had insufficient empirical 
evidence of intrinsic nature values. Lack of study 
integrates the regulating-provisioning services and 
social services assessments for climate change miti-
gation and water security, where both are critical con-
cerns as a climate vulnerable. These limitations were 
acknowledged by Español et  al. (2014); Irwin et  al. 
(2018); Manzo et  al. (2020); Rooney et  al. (2015); 
Sartori et  al. (2015); Sherren and Verstraten (2013); 

Wong et  al. (2018); Zhang et  al. (2013). Several 
efforts had been made to assess the constructed wet-
lands’ ecosystem services through a socio-ecological 
perspective under cultural services in adapting to cli-
mate change, compared to the mono-disciplinary val-
uation method as discussed previously. For example, 
it was pointed out by Sherren and Verstraten (2013) 
to understand how Cumberland County farmers 
perceive constructed wetlands and climate change. 
Despite the farmers being transparent about the sig-
nificance of constructed wetlands on water manage-
ment and occupied with its importance and challenge, 
they found that the farmers lack information about the 
constructed wetlands’ benefits in adapting to climate 
change. However, the Yongding Green Ecological 
Corridor showed a significant correlation between cit-
izens’ perceptions of climate regulation, water quality 
and scenic beauty but insignificant in heritage value 
for future generations (Wong et al. 2018). In addition, 
constructed wetlands’ ecosystem services with great 
self-mechanism also will enhance their ability to con-
serve biodiversity and positively reflect the percep-
tion of aesthetics and heritage values (Manzo et  al. 
2020; Rooney et al. 2015; Zhang et al. 2013).

Even though the interlinkages between ecosystem 
services and invaluable benefits are complex, using 
fragmented and disciplinary knowledge is insufficient 
to address the data and information gaps (Xu et  al., 
2018). This leads to unclear and unspecific manage-
ment demands of the constructed wetlands. Integrated 
approaches are required to understand how to connect 
issues to identify strategic actions on connections. 
The assessment of the instrumental-intrinsic values 
can provide empirical evidence that offers new per-
spectives and insights into the analytical framework 
for valuing the constructed wetlands’ ecosystem ser-
vices (Jamion et  al., 2022). To address these nature 
values, a more comprehensive underpinning knowl-
edge through interdisciplinary research is required to 
craft the constructed wetlands’ ecosystem values and 
evaluation. In this context, hard science that looks 
into instrumental values and soft science that looks 
into intrinsic values are needed to drive conservation 
management decisions as asserted by MEA in illus-
trating the relationships between ecosystem services 
and human well-being.
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Conceptual framework

The ecosystem services and nature values of con-
structed wetlands can be framed into a framework of 
carbon–water nexus which fills the gaps and strength-
ens the benefits of constructed wetlands. Since con-
structed wetlands have been shown to possess high 
potential in storing carbon and are essential as water 
resources, incorporating the carbon–water nexus is a 
great mechanism to call for action in mitigating cli-
mate change. However, the constructed wetlands 
have yet to become an integral part of decision-mak-
ing and management targets as a nature-based solu-
tion for climate change mitigation. Hence, optimis-
ing constructed wetland through regulating services 
for carbon sequestration and water security requires 
full consideration because the processes interrelate 
with provisioning and socio-culture services, which 
will affect the effectiveness of adaptation to cli-
mate change. The approach to addressing the gaps is 
through developing integrated evaluation models to 
understand the constructed wetlands’ ecosystem ser-
vices and values better. Most recent models (Santos 
et  al., 2018; Siniscalchi et  al., 2020; Waters et  al., 
2019; Wong et  al., 2018) were established by con-
verging only a few particular sectors, such as land use 
and land change, water supply and agriculture or mat-
ters bi-cross like biodiversity, and most of the existing 
models only able to simulate one type of ecosystem 
services. Hence, there is an urgent need to propose an 
integrated assessment model to estimate and evalu-
ate the absolute values of constructed wetlands on an 
entirely structural basis under various management 
and regulation circumstances at the socio-ecological 
level. Indirectly, this model will provide adequate 
data and information, thus filling the knowledge gaps 
in constructed wetlands’ ecosystem management.

Previous studies were found in lacking both quan-
titative and qualitative mixed approaches, whereby 
it is advisable with the principle of transdisciplinary 
research that connects scientific and societal prac-
tices in addressing sustainability issues (Lang et  al., 
2012) and eliminating bias in data collection (Saun-
ders et al., 2009). Besides, data availability and shar-
ing as well as parameterisation limiting the access 
will affect the ability to identify problems and strat-
egies for mitigation. Therefore, assessments based 
on empirical data and evidence-based methods may 

transfer more appropriate, reliable and credible infor-
mation for decision-making and planning processes.

Based on theory-driven studies (Arias-Arévalo 
et  al., 2017; MEA, 2005; Sandler, 2012) circled 
around carbon sequestration, water security, car-
bon–water nexus, nature values and services of 
constructed wetlands, a conceptual framework is 
proposed in Fig.  9, setting out two core features 
dichotomy of the nature values and services for con-
structed wetlands. It is a simplified model of the 
integration between people’s needs and constructed 
wetlands’ ecosystem services in mitigating climate 
change. The conceptual framework can be comple-
mentary to science-based models and acts as a tool 
to achieve understanding across different disciplines. 
The conceptual framework has four functions which 
are interconnected to provide and enhance the prac-
tice of analysing the existing knowledge, as a catalyst 
to generate new knowledge, to guide and support the 
development and implementation of associated poli-
cies, as well as to develop abilities that are relevant to 
attaining the stakeholders’ objectives.

The main feature in the conceptual framework, 
nature values consist of instrumental and intrinsic 
values interlinked elements, constituting all con-
structed wetlands’ ecosystem services. The instru-
mental values of constructed wetlands benefit peo-
ple through the regulating and provisioning services 
via carbon sequestration and water security. Besides, 
constructed wetlands possess intrinsic values, inher-
iting their nature objectives, such as regulating the 
environment’s temperature, producing oxygen and 
regulating the quality and quantity of water resources 
while subjective intrinsic values interlink with the 
socio-cultural services for recreational and aesthetic, 
biodiversity and heritage purposes. The importance 
of benefits/values and services of constructed wet-
lands should be created between human and nature 
as in the notion of sustainability to live in tranquil-
lity with nature. Hence, the fundamental importance 
is to translate the conceptual framework into prac-
tices and catalyse a positive transformation within the 
interlinking elements, particularly in the sustainable 
management of constructed wetlands. In this context, 
the call for action to carry out long-term conserva-
tion of constructed wetlands is needed to increase the 
resilience towards the impacts of climate change and 
ensure water security in which collaboration between 
scientists, administrators, authorities and societies 
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could pave the path in safeguarding the ecosystem 
services for a sustainable environment.

Conclusion and recommendation for future study

Based on 38 studies retrieved from the Scopus and 
WoS databases, a systematic review has been con-
ducted to explore constructed wetlands’ functions 
in regulating services, especially climate regulat-
ing, which are carbon storage and sequestration 
as well as water purification for water security. 
This review derived an integrated classification 
of constructed wetlands’ ecosystem services and 
mapped them with their nature values. Besides, this 
review depicts how nature values can be evaluated 
through constructed wetlands’ cultural services as 
it is known to offer various ecosystem services and 
benefits that contribute to livelihood and wellbe-
ing. Researchers have reviewed different types of 
constructed wetlands in examining the effective-
ness of carbon sequestration and water purification 
through evaluation, driving factors and trade-off 
analyses. Plant diversity and sedimentation show a 
vital role in the carbon–water nexus as constructed 
wetlands have been critical in global climate change 
and conservation debates in virtue of increasing 

demand for research into which ecosystem services 
and benefits have the most significant value. This 
review has also enhanced the insight of nature val-
ues, namely instrumental and intrinsic values, as 
the socio-ecological valuation for constructed wet-
lands’ ecosystem management. Besides, the review 
reveals some gaps, namely mono-disciplinary eval-
uation practices of ecosystem services, knowledge 
and methodology in valuing constructed wetlands’ 
ecosystems. Lastly, a conceptual framework was 
synthesised based on the conceptualisation of the 
carbon–water nexus that integrates the dichotomy 
of the instrumental-intrinsic nature values to evalu-
ate the importance and benefit of constructed wet-
lands. As a result, this review has provided insights 
into the body of knowledge on the benefits and val-
ues of constructed wetlands. Further, utilising the 
conceptual framework may lead to a future study 
in assessing the nature values provided by the con-
structed wetlands to sustain the ecosystems. All in 
all, enhancing the carbon–water nexus in climate 
change mitigation and water conservation requires 
collaborative efforts involving scientists, stakehold-
ers and the public to provide a new path for a holis-
tic approach to managing constructed wetland eco-
systems towards environmental sustainability.

Fig. 9  A conceptual frame-
work of carbon–water nexus 
of constructed wetland. *In 
the main panel, nature value 
is denoted in a blue box 
and ecosystem services in 
a yellow box; text in blue 
denotes the concept of hard 
science and text in green 
denotes the soft science that 
needs a transdisciplinary 
approach to achieve the aim 
of carbon–water nexus of 
constructed wetland
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